Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Measuring terahertz waveforms in terahertz spectroscopy often relies on electro-optic sampling employing a ZnTe crystal. Although the nonlinearities in such zincblende semiconductors induced by intense terahertz pulses have been studied at optical frequencies, a quantitative study of nonlinearities in the terahertz regime has not been reported. In this work, we investigate the nonlinear response of ZnTe in the terahertz frequency region utilizing time-resolved terahertz-pump terahertz-probe spectroscopy. We find that the interaction of two co-propagating terahertz pulses in ZnTe leads to a nonlinear polarization change which modifies the electro-optic response of the medium at terahertz frequencies. We present a model for this polarization that showcases the second-order nonlinear behavior. We also determine the magnitude of the third-order susceptibility in ZnTe at terahertz frequencies,χ(3)(ωTHz). These results clarify the interactions in ZnTe at terahertz frequencies, with implications for measurements of intense terahertz fields using electro-optic sampling.more » « less
- 
            We report a characterization of the spatial resolution of terahertz (THz) apertureless near-field imaging of metal lines deeply buried beneath a silicon dioxide layer. We find a good resolution for edge contrast, even in the case where the capping layer is considerably thicker than the tip radius. We find that contrast and resolution depend on demodulation frequency, thickness of the capping layer, and radius of the tip. Furthermore, we observe a distinct dependence of the contrast on the direction of the incoming radiation, in both experiments and simulations. Characterization of buried features can be a valuable tool in non-contact failure analysis of semiconductor devices.more » « less
- 
            Abstract One of the key distinctions between legacy low-frequency wireless systems and future THz wireless transmissions is that THz links will require high directionality, to overcome the large free-space path loss. Because of this directionality, optical phenomena become increasingly important as design considerations. A key example lies in the strong dependence of angular radiation patterns on the transmission frequency, which is manifested in many different situations including common diffraction patterns and the emission from leaky-wave apertures. As a result of this effect, the spectral bandwidth at a receiver is nonlinearly dependent on the receiver’s angular position and distance from the transmitter. In this work, we explore the implications of this type of effect by incorporating either a diffraction grating or a leaky wave antenna into a communication link. These general considerations will have significant implications for the robustness of data transmissions at high frequencies.more » « less
- 
            We demonstrate a bar code sensing system for the THz region using leaky parallel plate waveguide and an off-axis parabolic mirror. The bars of the bar code are made from metal with air as gaps between them. We use up to 6 bars in the barcode system which can store up to 64 bits. Because the system employs coherent detection, we can further increase the bit density by adding Teflon strips to the barcode, encoding information in both amplitude and phase delay. These bar codes can be manufactured easily and inexpensively, offering a versatile alternative to RFID tags.more » « less
- 
            As a key potential component of future sixth-generation (6G) communication systems, terahertz (THz) technology has received much attention in recent years. However, a lack of effective high-speed direct modulation of THz waves has limited the development of THz communication technology. Currently, most high-speed modulators are based on photonic systems that can modulate electromagnetic waves with high speed using sophisticated optoelectronic conversion techniques. Yet, they usually suffer from low conversion efficiency of light to the THz range, resulting in low output power of the modulated THz waves. Here, we describe a guided-wave modulator for THz signals whose performance nearly matches that of existing in-line fiber-optic modulators. Our results demonstrate a maximum modulation depth greater than 20 dB (99%) and a maximum sinusoidal modulation speed of more than 30 GHz, with an insertion loss around 7 dB. We demonstrate the capabilities of this modulator in a point-to-point communication link with a 25 Gbit/s modulation speed. Our modulator design, based on near-field coupling of a THz transmission line to a single resonant meta-element, represents a powerful improvement for on-chip integrated high-performance THz devices.more » « less
- 
            Terahertz technology has greatly benefited from the recent development and generalization of prototyping technologies such as 3D printing and laser machining. These techniques can be used to rapidly fabricate optical devices for applications in sensing, imaging and communications. In this paper, we introduce hot stamping, a simple inexpensive and rapid technique to form 2D metallic patterns that are suitable for many terahertz devices. We fabricate several example devices to illustrate the versatility of the technique, including metasurfaces made of arrays of split-ring resonators with resonances up to 550 GHz. We also fabricate a wire-grid polarizer for use as a polarizing beam splitter. The simplicity and low cost of this technique can help in rapid prototyping and realization of future terahertz devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
